A representation theorem for stochastic processes with separable covariance functions, and its implications for emulation
نویسنده
چکیده
Many applications require stochastic processes specified on twoor higherdimensional domains; spatial or spatial-temporal modelling, for example. In these applications it is attractive, for conceptual simplicity and computational tractability, to propose a covariance function that is separable; e.g. the product of a covariance function in space and one in time. This paper presents a representation theorem for such a proposal, and shows that all processes with continuous separable covariance functions are second-order identical to the product of second-order uncorrelated processes. It discusses the implications of separable or nearly separable prior covariances for the statistical emulation of complicated functions such as computer codes, and critically reexamines the conventional wisdom concerning emulator structure, and size of design.
منابع مشابه
COVARIANCE MATRIX OF MULTIVARIATE REWARD PROCESSES WITH NONLINEAR REWARD FUNCTIONS
Multivariate reward processes with reward functions of constant rates, defined on a semi-Markov process, first were studied by Masuda and Sumita, 1991. Reward processes with nonlinear reward functions were introduced in Soltani, 1996. In this work we study a multivariate process , , where are reward processes with nonlinear reward functions respectively. The Laplace transform of the covar...
متن کاملIsotropic covariance functions on spheres: Some properties and modeling considerations
Introducing flexible covariance functions is critical for interpolating spatial data since the properties of interpolated surfaces depend on the covariance function used for Kriging. An extensive literature is devoted to covariance functions on Euclidean spaces, where the Matérn covariance family is a valid and flexible parametric family capable of controlling the smoothness of corresponding st...
متن کاملTHE REVIEW OF ALMOST PERIODIC SOLUTIONS TO A STOCHASTIC DIERENTIAL EQUATION
This paper proves the existence and uniqueness of quadratic mean almost periodic mild so-lutions for a class of stochastic dierential equations in a real separable Hilbert space. Themain technique is based upon an appropriate composition theorem combined with the Banachcontraction mapping principle and an analytic semigroup of linear operators.
متن کاملGENERALIZED POSITIVE DEFINITE FUNCTIONS AND COMPLETELY MONOTONE FUNCTIONS ON FOUNDATION SEMIGROUPS
A general notion of completely monotone functionals on an ordered Banach algebra B into a proper H*-algebra A with an integral representation for such functionals is given. As an application of this result we have obtained a characterization for the generalized completely continuous monotone functions on weighted foundation semigroups. A generalized version of Bochner’s theorem on foundation se...
متن کاملStochastic differential inclusions of semimonotone type in Hilbert spaces
In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...
متن کامل